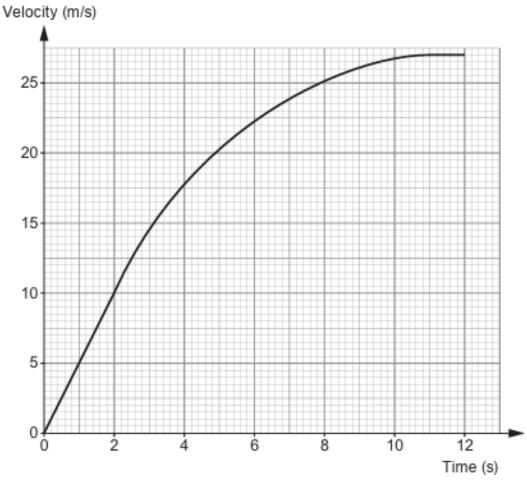
Speed, Distance, Acceleration Higher Tier

Equations


speed = distance time	
acceleration [or deceleration] = change in velocity time	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
distance travelled = area under a velocity-time graph	
resultant force = mass × acceleration	F = ma
weight = mass × gravitational field strength	W = mg
work = force × distance	W = Fd
$kinetic energy = \frac{mass \times velocity^2}{2}$	$KE = \frac{1}{2} mv^2$
change in potential = mass × gravitational field × change in energy strength height	PE = mgh
force = spring constant × extension	F = kx
work done in stretching = area under a force-extension graph	$W = \frac{1}{2} F_X$

SI multipliers

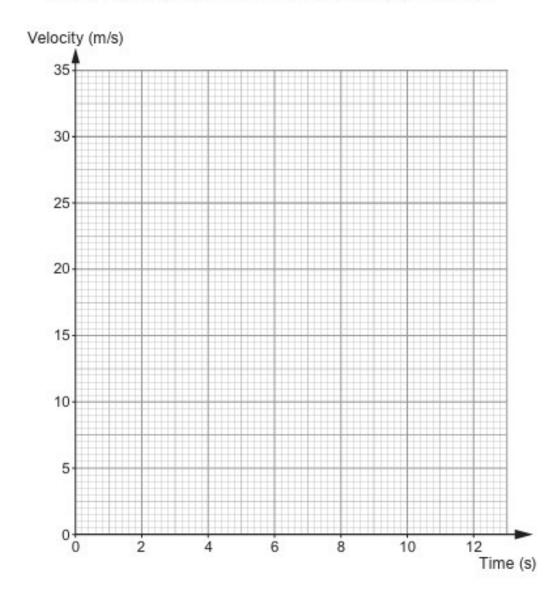
Prefix	Multiplier
р	1 × 10 ⁻¹²
n	1 × 10 ⁻⁹
μ	1 × 10 ⁻⁶
m	1 × 10 ⁻³

Prefix	Multiplier
k	1 × 10 ³
M	1 × 10 ⁶
G	1 × 10 ⁹
Т	1 × 10 ¹²

Manufacturers test new cars on a level track. In order to find out how long it takes them to accelerate to 27 m/s (60 mph), the cars are driven in a straight line at maximum power and the speed recorded. Data for one car is shown on the graph below.

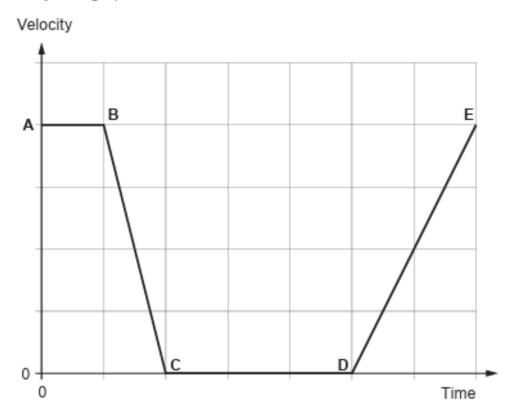
(a)	Describe how the acceleration changes during the 12s shown.	[2]

(b) By drawing a suitable tangent and using:


acceleration = gradient of a velocity-time graph

[3]

calculate the acceleration of the car at 5s. Give a unit with your answer.


(c)	Use an equation fro	m page 2 to estin	nate the distance	travelled by the ca	r in the first 3s.
188	- 1	39.4.75		70	[2]

(d) Another car of the same power and mass but with a more streamlined shape is tested. Sketch on the grid below the velocity-time graph for this car. [2]

(a) Since 2017, new bi-modal electric/diesel trains have been introduced to run between Swansea and London.

A velocity-time graph for one of these trains is shown below.

the parts of the journey labelled AB, BC, CD and DE. [6 QER]

Use information from page 2 to compare the distances travelled and accelerations for

(b) The diagram shows a 5-carriage bi-modal electric/diesel train.

The table below shows information about two types of bi-modal electric/diesel trains.

Train	Mass (×10 ⁵ kg)	Maximum speed (m/s)	Standard acceleration (m/s²)	Standard deceleration (m/s²)	Emergency deceleration (m/s²)
5 carriage	2.3	55.8	0.7	1.0	1.2
9 carriage	4.4	55.8	0.7	1.0	1.2

For the journey from Swansea to London two of the 5-carriage trains are joined, making a 10-carriage train.

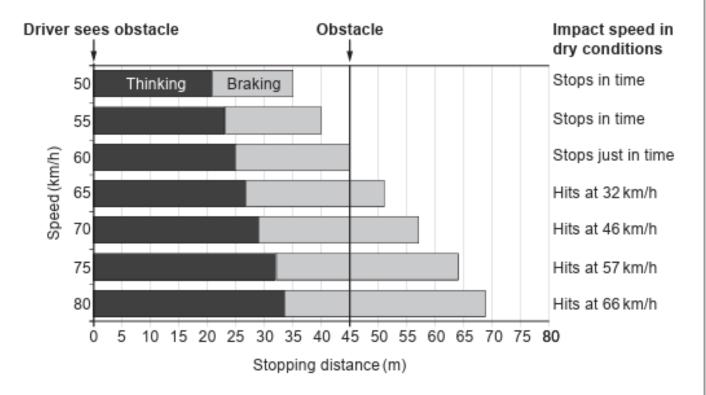
The 10-carriage train has the same speed and acceleration as a 5-carriage train.

(i)	State Newton's second law of motion as an equation.	[1]

- (ii) Use information from the table to answer the following questions.
 - Use an equation from page 2 to calculate the resultant force needed to accelerate the 10-carriage train.

II. Use the equation:

$$acceleration = \frac{change in velocity}{time}$$


to calculate the time taken to accelerate the 10-carriage train from rest to its maximum speed. [2]

Time =	:	S
--------	---	---

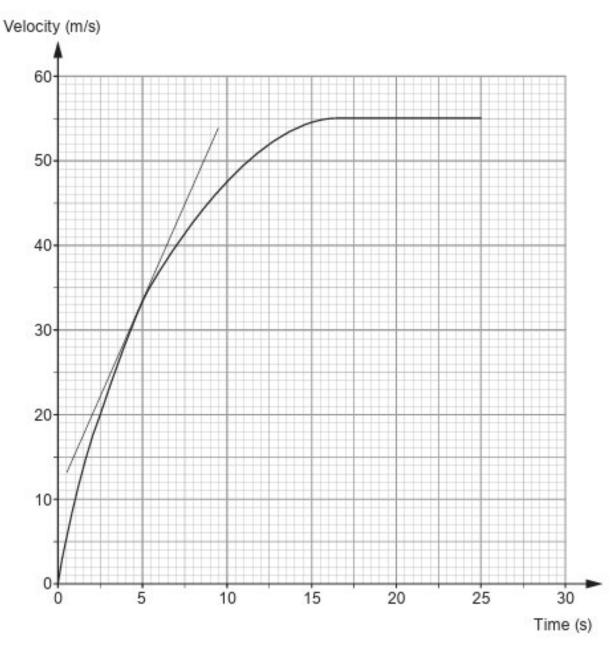
(a)	When a car stops the overall stopping distance is made up of two distances: the think distance and the braking distance. Increasing speed increases both the thinking distance and the braking distance.	ing
	(i) State one factor, other than speed, which increases the thinking distance.	[1]
	(ii) State one factor, other than speed, which increases the braking distance.	[1]
(b)	The diagram gives information about stopping distances at different speeds.	
	20 mph 6m 6m BRAKING DISTANCE DISTANCE	
	30 mph 9 m 14 m	
	40 mph 12 m 24 m	
	50 mph 15 m 38 m	
	60 mph 18 m 56 m	
	On a dangerous road, it is proposed to reduce the speed limit from 40 mph to 20 mph	-
	Bethan makes the following 3 suggestions. 1. The thinking distance will halve. 2. The braking distance will halve. 3. The overall stopping distance will halve.	
	Explain whether you agree with each suggestion. Include data from the diagram to support your answer.	[3]

The chart below is used by traffic collision investigators. It gives the thinking, braking and stopping distances of cars driven at different speeds by an alert driver on a dry road.

An alert driver notices an obstacle 45 m away on the road ahead. The position of this obstacle is represented by the dark vertical line. If there is a collision, the chart also shows the impact speed with the obstacle.

- (a) State how the following information in the chart for a speed of 70 km/h would compare if the tyre treads on the car are worn below the legal limit. [3]
 - (i) Thinking distance
 - (ii) Braking distance
 - (iii) Impact speed

Use the information opposite to answer the following questions about a car travelling at $60\,\mathrm{km/h}$ which decelerates to a stop. (10 km/h = 2.8 m/s)


(i) Complete the following table.

[4]

Initial speed (km/h)	Initial speed (m/s)	Thinking distance (m)	Braking distance (m)	Stopping distance (m)
60				

	. ,	` '	` '	` '
60				
(ii) U	Ising the information i	n the table, calculate	e the thinking time	of the driver. [3]
			thinking time	=s

(b) The velocity-time graph below shows the motion of a skydiver. A tangent has been drawn at 5 seconds.

Acceleration can be calculated by measuring the gradient of a velocity-time graph.
 Calculate the acceleration of the skydiver at 5s by using the tangent shown. [3]

Acceleration =m/s2

(ii)	Describe how the acceleration changes over the 25s shown.	[2]
(iii)	Use the graph and an equation from page 2 to estimate the distance travelled to the skydiver in the first 5 s.)у [3]
	Distance travelled =	m
	Distance travelled =	m

End of questions